268 research outputs found

    DeepKey: Towards End-to-End Physical Key Replication From a Single Photograph

    Get PDF
    This paper describes DeepKey, an end-to-end deep neural architecture capable of taking a digital RGB image of an 'everyday' scene containing a pin tumbler key (e.g. lying on a table or carpet) and fully automatically inferring a printable 3D key model. We report on the key detection performance and describe how candidates can be transformed into physical prints. We show an example opening a real-world lock. Our system is described in detail, providing a breakdown of all components including key detection, pose normalisation, bitting segmentation and 3D model inference. We provide an in-depth evaluation and conclude by reflecting on limitations, applications, potential security risks and societal impact. We contribute the DeepKey Datasets of 5, 300+ images covering a few test keys with bounding boxes, pose and unaligned mask data.Comment: 14 pages, 12 figure

    Depth Estimation Through a Generative Model of Light Field Synthesis

    Full text link
    Light field photography captures rich structural information that may facilitate a number of traditional image processing and computer vision tasks. A crucial ingredient in such endeavors is accurate depth recovery. We present a novel framework that allows the recovery of a high quality continuous depth map from light field data. To this end we propose a generative model of a light field that is fully parametrized by its corresponding depth map. The model allows for the integration of powerful regularization techniques such as a non-local means prior, facilitating accurate depth map estimation.Comment: German Conference on Pattern Recognition (GCPR) 201

    Baseline and triangulation geometry in a standard plenoptic camera

    Get PDF
    In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model

    Cortical Maps

    Get PDF
    In this article, we review functional organization in sensory cortical regions-how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation

    Feature pyramid transformer

    Get PDF
    Feature interactions across space and scales underpin modern visual recognition systems because they introduce beneficial visual contexts. Conventionally, spatial contexts are passively hidden in the CNN's increasing receptive fields or actively encoded by non-local convolution. Yet, the non-local spatial interactions are not across scales, and thus they fail to capture the non-local contexts of objects (or parts) residing in different scales. To this end, we propose a fully active feature interaction across both space and scales, called Feature Pyramid Transformer (FPT). It transforms any feature pyramid into another feature pyramid of the same size but with richer contexts, by using three specially designed transformers in self-level, top-down, and bottom-up interaction fashion. FPT serves as a generic visual backbone with fair computational overhead. We conduct extensive experiments in both instance-level (i.e., object detection and instance segmentation) and pixel-level segmentation tasks, using various backbones and head networks, and observe consistent improvement over all the baselines and the state-of-the-art methods.Comment: Published at the European Conference on Computer Vision, 202

    Accidental Pinhole and Pinspeck Cameras

    Get PDF
    We identify and study two types of “accidental” images that can be formed in scenes. The first is an accidental pinhole camera image. The second class of accidental images are “inverse” pinhole camera images, formed by subtracting an image with a small occluder present from a reference image without the occluder. Both types of accidental cameras happen in a variety of different situations. For example, an indoor scene illuminated by natural light, a street with a person walking under the shadow of a building, etc. The images produced by accidental cameras are often mistaken for shadows or interreflections. However, accidental images can reveal information about the scene outside the image, the lighting conditions, or the aperture by which light enters the scene.National Science Foundation (U.S.) (CAREER Award 0747120)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933)National Science Foundation (U.S.) (CGV 1111415)National Science Foundation (U.S.) (CGV 0964004

    Spike to spike MT model and applications

    Get PDF

    Vehicle Re-identification in Context

    Get PDF
    © 2019, Springer Nature Switzerland AG. Existing vehicle re-identification (re-id) evaluation benchmarks consider strongly artificial test scenarios by assuming the availability of high quality images and fine-grained appearance at an almost constant image scale, reminiscent to images required for Automatic Number Plate Recognition, e.g. VeRi-776. Such assumptions are often invalid in realistic vehicle re-id scenarios where arbitrarily changing image resolutions (scales) are the norm. This makes the existing vehicle re-id benchmarks limited for testing the true performance of a re-id method. In this work, we introduce a more realistic and challenging vehicle re-id benchmark, called Vehicle Re-Identification in Context (VRIC). In contrast to existing vehicle re-id datasets, VRIC is uniquely characterised by vehicle images subject to more realistic and unconstrained variations in resolution (scale), motion blur, illumination, occlusion, and viewpoint. It contains 60,430 images of 5,622 vehicle identities captured by 60 different cameras at heterogeneous road traffic scenes in both day-time and night-time. Given the nature of this new benchmark, we further investigate a multi-scale matching approach to vehicle re-id by learning more discriminative feature representations from multi-resolution images. Extensive evaluations show that the proposed multi-scale method outperforms the state-of-the-art vehicle re-id methods on three benchmark datasets: VehicleID, VeRi-776, and VRIC (Available at http://qmul-vric.github.io )
    • …
    corecore